Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

For2For: Learning to forecast from forecasts (2001.04601v1)

Published 14 Jan 2020 in stat.ML and cs.LG

Abstract: This paper presents a time series forecasting framework which combines standard forecasting methods and a machine learning model. The inputs to the machine learning model are not lagged values or regular time series features, but instead forecasts produced by standard methods. The machine learning model can be either a convolutional neural network model or a recurrent neural network model. The intuition behind this approach is that forecasts of a time series are themselves good features characterizing the series, especially when the modelling purpose is forecasting. It can also be viewed as a weighted ensemble method. Tested on the M4 competition dataset, this approach outperforms all submissions for quarterly series, and is more accurate than all but the winning algorithm for monthly series.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Shi Zhao (10 papers)
  2. Ying Feng (22 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.