Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parametrization, structure and Bruhat order of certain spherical quotients (2001.04411v2)

Published 13 Jan 2020 in math.RT, math.AG, and math.CO

Abstract: Let $G$ be a reductive algebraic group and let $Z$ be the stabilizer of a nilpotent element $e$ of the Lie algebra of $G$. We consider the action of $Z$ on the flag variety of $G$, and we focus on the case where this action has a finite number of orbits (i.e., $Z$ is a spherical subgroup). This holds for instance if $e$ has height $2$. In this case we give a parametrization of the $Z$-orbits and we show that each $Z$-orbit has a structure of algebraic affine bundle. In particular, in type $A$, we deduce that each orbit has a natural cell decomposition. In the aim to study the (strong) Bruhat order of the orbits, we define an abstract partial order on certain quotients associated to a Coxeter system. In type $A$, we show that the Bruhat order of the $Z$-orbits can be described in this way.

Summary

We haven't generated a summary for this paper yet.