Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 105 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 45 tok/s
GPT-5 High 34 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 218 tok/s Pro
2000 character limit reached

Classifying All Interacting Pairs in a Single Shot (2001.04360v1)

Published 13 Jan 2020 in cs.CV

Abstract: In this paper, we introduce a novel human interaction detection approach, based on CALIPSO (Classifying ALl Interacting Pairs in a Single shOt), a classifier of human-object interactions. This new single-shot interaction classifier estimates interactions simultaneously for all human-object pairs, regardless of their number and class. State-of-the-art approaches adopt a multi-shot strategy based on a pairwise estimate of interactions for a set of human-object candidate pairs, which leads to a complexity depending, at least, on the number of interactions or, at most, on the number of candidate pairs. In contrast, the proposed method estimates the interactions on the whole image. Indeed, it simultaneously estimates all interactions between all human subjects and object targets by performing a single forward pass throughout the image. Consequently, it leads to a constant complexity and computation time independent of the number of subjects, objects or interactions in the image. In detail, interaction classification is achieved on a dense grid of anchors thanks to a joint multi-task network that learns three complementary tasks simultaneously: (i) prediction of the types of interaction, (ii) estimation of the presence of a target and (iii) learning of an embedding which maps interacting subject and target to a same representation, by using a metric learning strategy. In addition, we introduce an object-centric passive-voice verb estimation which significantly improves results. Evaluations on the two well-known Human-Object Interaction image datasets, V-COCO and HICO-DET, demonstrate the competitiveness of the proposed method (2nd place) compared to the state-of-the-art while having constant computation time regardless of the number of objects and interactions in the image.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube