Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal Algorithms for Parity Games and Nested Fixpoints (2001.04333v2)

Published 13 Jan 2020 in cs.DS, cs.FL, cs.GT, and cs.LO

Abstract: An attractor decomposition meta-algorithm for solving parity games is given that generalises the classic McNaughton-Zielonka algorithm and its recent quasi-polynomial variants due to Parys (2019), and to Lehtinen, Schewe, and Wojtczak (2019). The central concepts studied and exploited are attractor decompositions of dominia in parity games and the ordered trees that describe the inductive structure of attractor decompositions. The universal algorithm yields McNaughton-Zielonka, Parys, and Lehtinen-Schewe-Wojtczak algorithms as special cases when suitable universal trees are given to it as inputs. The main technical results provide a unified proof of correctness and structural insights into those algorithms. Suitably adapting the universal algorithm for parity games to fixpoint games gives a quasi-polynomial time algorithm to compute nested fixpoints over finite complete lattices. The universal algorithms for parity games and nested fixpoints can be implemented symbolically. It is shown how this can be done with $O(\lg d)$ symbolic space complexity, improving the $O(d \lg n)$ symbolic space complexity achieved by Chatterjee, Dvo\v{r}\'{a}k, Henzinger, and Svozil (2018) for parity games, where $n$ is the number of vertices and $d$ is the number of distinct priorities in a parity game.

Citations (4)

Summary

We haven't generated a summary for this paper yet.