Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Panel Data Quantile Regression for Treatment Effect Models (2001.04324v3)

Published 13 Jan 2020 in stat.ME and econ.EM

Abstract: In this study, we develop a novel estimation method for quantile treatment effects (QTE) under rank invariance and rank stationarity assumptions. Ishihara (2020) explores identification of the nonseparable panel data model under these assumptions and proposes a parametric estimation based on the minimum distance method. However, when the dimensionality of the covariates is large, the minimum distance estimation using this process is computationally demanding. To overcome this problem, we propose a two-step estimation method based on the quantile regression and minimum distance methods. We then show the uniform asymptotic properties of our estimator and the validity of the nonparametric bootstrap. The Monte Carlo studies indicate that our estimator performs well in finite samples. Finally, we present two empirical illustrations, to estimate the distributional effects of insurance provision on household production and TV watching on child cognitive development.

Summary

We haven't generated a summary for this paper yet.