Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fractional order graph neural network (2001.04026v3)

Published 5 Jan 2020 in cs.LG, cs.CV, and stat.ME

Abstract: This paper proposes fractional order graph neural networks (FGNNs), optimized by the approximation strategy to address the challenges of local optimum of classic and fractional graph neural networks which are specialised at aggregating information from the feature and adjacent matrices of connected nodes and their neighbours to solve learning tasks on non-Euclidean data such as graphs. Meanwhile the approximate calculation of fractional order gradients also overcomes the high computational complexity of fractional order derivations. We further prove that such an approximation is feasible and the FGNN is unbiased towards global optimization solution. Extensive experiments on citation networks show that FGNN achieves great advantage over baseline models when selected appropriate fractional order.

Summary

We haven't generated a summary for this paper yet.