Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A stable SPH with adaptive B-spline kernel (2001.03416v1)

Published 4 Jan 2020 in cs.CE

Abstract: Tensile instability, often observed in smoothed particle hydrodynamics (SPH), is a numerical artifact that manifests itself by unphysical clustering or separation of particles. The instability originates in estimating the derivatives of the smoothing functions which, when interact with material constitution may result in negative stiffness in the discretized system. In the present study, a stable formulation of SPH is developed where the kernel function is continuously adapted at every material point depending on its state of stress. Bspline basis function with a variable intermediate knot is used as the kernel function. The shape of the kernel function is then modified by changing the intermediate knot position such that the condition associated with instability does not arise. While implementing the algorithm the simplicity and computational efficiency of SPH are not compromised. One-dimensional dispersion analysis is performed to understand the effect adaptive kernel on the stability. Finally, the efficacy of the algorithm is demonstrated through some benchmark elastic dynamics problems.

Citations (12)

Summary

We haven't generated a summary for this paper yet.