Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Taylor Moment Expansion for Continuous-Discrete Gaussian Filtering and Smoothing (2001.02466v1)

Published 8 Jan 2020 in stat.ME, math.ST, stat.AP, stat.ML, and stat.TH

Abstract: The paper is concerned with non-linear Gaussian filtering and smoothing in continuous-discrete state-space models, where the dynamic model is formulated as an It^{o} stochastic differential equation (SDE), and the measurements are obtained at discrete time instants. We propose novel Taylor moment expansion (TME) Gaussian filter and smoother which approximate the moments of the SDE with a temporal Taylor expansion. Differently from classical linearisation or It^{o}--Taylor approaches, the Taylor expansion is formed for the moment functions directly and in time variable, not by using a Taylor expansion on the non-linear functions in the model. We analyse the theoretical properties, including the positive definiteness of the covariance estimate and stability of the TME Gaussian filter and smoother. By numerical experiments, we demonstrate that the proposed TME Gaussian filter and smoother significantly outperform the state-of-the-art methods in terms of estimation accuracy and numerical stability.

Citations (14)

Summary

We haven't generated a summary for this paper yet.