Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exact Bayesian inference for discretely observed Markov Jump Processes using finite rate matrices (2001.02168v2)

Published 16 Dec 2019 in stat.CO, stat.ME, and stat.OT

Abstract: We present new methodologies for Bayesian inference on the rate parameters of a discretely observed continuous-time Markov jump processes with a countably infinite state space. The usual method of choice for inference, particle Markov chain Monte Carlo (particle MCMC), struggles when the observation noise is small. We consider the most challenging regime of exact observations and provide two new methodologies for inference in this case: the minimal extended state space algorithm (MESA) and the nearly minimal extended state space algorithm (nMESA). By extending the Markov chain Monte Carlo state space, both MESA and nMESA use the exponentiation of finite rate matrices to perform exact Bayesian inference on the Markov jump process even though its state space is countably infinite. Numerical experiments show improvements over particle MCMC of between a factor of three and several orders of magnitude.

Summary

We haven't generated a summary for this paper yet.