Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reanalysis of Variance Reduced Temporal Difference Learning (2001.01898v2)

Published 7 Jan 2020 in cs.LG and stat.ML

Abstract: Temporal difference (TD) learning is a popular algorithm for policy evaluation in reinforcement learning, but the vanilla TD can substantially suffer from the inherent optimization variance. A variance reduced TD (VRTD) algorithm was proposed by Korda and La (2015), which applies the variance reduction technique directly to the online TD learning with Markovian samples. In this work, we first point out the technical errors in the analysis of VRTD in Korda and La (2015), and then provide a mathematically solid analysis of the non-asymptotic convergence of VRTD and its variance reduction performance. We show that VRTD is guaranteed to converge to a neighborhood of the fixed-point solution of TD at a linear convergence rate. Furthermore, the variance error (for both i.i.d.\ and Markovian sampling) and the bias error (for Markovian sampling) of VRTD are significantly reduced by the batch size of variance reduction in comparison to those of vanilla TD. As a result, the overall computational complexity of VRTD to attain a given accurate solution outperforms that of TD under Markov sampling and outperforms that of TD under i.i.d.\ sampling for a sufficiently small conditional number.

Citations (36)

Summary

We haven't generated a summary for this paper yet.