Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 83 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Mel-spectrogram augmentation for sequence to sequence voice conversion (2001.01401v2)

Published 6 Jan 2020 in cs.LG, cs.SD, and stat.ML

Abstract: For training the sequence-to-sequence voice conversion model, we need to handle an issue of insufficient data about the number of speech pairs which consist of the same utterance. This study experimentally investigated the effects of Mel-spectrogram augmentation on training the sequence-to-sequence voice conversion (VC) model from scratch. For Mel-spectrogram augmentation, we adopted the policies proposed in SpecAugment. In addition, we proposed new policies (i.e., frequency warping, loudness and time length control) for more data variations. Moreover, to find the appropriate hyperparameters of augmentation policies without training the VC model, we proposed hyperparameter search strategy and the new metric for reducing experimental cost, namely deformation per deteriorating ratio. We compared the effect of these Mel-spectrogram augmentation methods based on various sizes of training set and augmentation policies. In the experimental results, the time axis warping based policies (i.e., time length control and time warping.) showed better performance than other policies. These results indicate that the use of the Mel-spectrogram augmentation is more beneficial for training the VC model.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.