Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quasilinear Schrödinger equations III: Large Data and Short Time (2001.01014v2)

Published 4 Jan 2020 in math.AP

Abstract: In this article we prove short time local well-posedness in low-regularity Sobolev spaces for large data general quasilinear Schr\"odinger equations with a non-trapping assumption. These results represent improvements over the small data regime considered by the authors in previous works, as well as the pioneering works by Kenig-Ponce-Vega and Kenig-Ponce-Rolvung-Vega, where viscosity methods were used to prove existence of solutions for localized data in high regularity spaces. Our arguments here are purely dispersive. The function spaces in which we show existence are constructed in ways motivated by the results of Mizohata, Ichinose, Doi, and others, including the authors.

Summary

We haven't generated a summary for this paper yet.