Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PI-GAN: Learning Pose Independent representations for multiple profile face synthesis (2001.00645v1)

Published 26 Dec 2019 in cs.CV and eess.IV

Abstract: Generating a pose-invariant representation capable of synthesizing multiple face pose views from a single pose is still a difficult problem. The solution is demanded in various areas like multimedia security, computer vision, robotics, etc. Generative adversarial networks (GANs) have encoder-decoder structures possessing the capability to learn pose-independent representation incorporated with discriminator network for realistic face synthesis. We present PIGAN, a cyclic shared encoder-decoder framework, in an attempt to solve the problem. As compared to traditional GAN, it consists of secondary encoder-decoder framework sharing weights from the primary structure and reconstructs the face with the original pose. The primary framework focuses on creating disentangle representation, and secondary framework aims to restore the original face. We use CFP high-resolution, realistic dataset to check the performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Hamed Alqahtani (4 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.