Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convolutional Neural Network-based Topology Optimization (CNN-TO) By Estimating Sensitivity of Compliance from Material Distribution (2001.00635v1)

Published 23 Dec 2019 in cs.LG and cs.CE

Abstract: This paper proposes a new topology optimization method that applies a convolutional neural network (CNN), which is one deep learning technique for topology optimization problems. Using this method, we acquire a structure with a little higher performance that could not be obtained by the previous topology optimization method. In particular, in this paper, we solve a topology optimization problem aimed at maximizing stiffness with a mass constraint, which is a common type of topology optimization. In this paper, we first formulate the conventional topology optimization by the solid isotropic material with penalization method. Next, we formulate the topology optimization using CNN. Finally, we show the effectiveness of the proposed topology optimization method by solving a verification example, namely a topology optimization problem aimed at maximizing stiffness. In this research, as a result of solving the verification example for a small design area of 16x32 element, we obtain the solution different from the previous topology optimization method. This result suggests that stiffness information of structure can be extracted and analyzed for structural design by analyzing the density distribution using CNN like an image. This suggests that CNN technology can be utilized in the structural design and topology optimization.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yusuke Takahashi (2 papers)
  2. Yoshiro Suzuki (4 papers)
  3. Akira Todoroki (1 paper)
Citations (6)

Summary

We haven't generated a summary for this paper yet.