Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectral analysis on standard locally homogeneous spaces (1912.12601v2)

Published 29 Dec 2019 in math.RT, math.DG, and math.SP

Abstract: Let $X=G/H$ be a reductive homogeneous space with $H$ noncompact, endowed with a $G$-invariant pseudo-Riemannian structure. Let $L$ be a reductive subgroup of $G$ acting properly on $X$ and $\Gamma$ a torsion-free discrete subgroup of $L$. Under the assumption that the complexification $X_{\mathbb C}$ is $L_{\mathbb C}$-spherical, we prove an explicit correspondence between spectral analysis on the standard locally homogeneous space $X_{\Gamma}=\Gamma\backslash X$ and on $\Gamma\backslash L$ via branching laws for the restriction to $L$ of irreducible representations of $G$. In particular, we prove that the pseudo-Riemannian Laplacian on $X_{\Gamma}$ is essentially self-adjoint, and that it admits an infinite point spectrum when $X_{\Gamma}$ is compact or $\Gamma\subset L$ is arithmetic. The proof builds on structural results for invariant differential operators on spherical homogeneous spaces with overgroups.

Summary

We haven't generated a summary for this paper yet.