Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
72 tokens/sec
GPT-4o
61 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TextScanner: Reading Characters in Order for Robust Scene Text Recognition (1912.12422v2)

Published 28 Dec 2019 in cs.CV, cs.CL, and cs.LG

Abstract: Driven by deep learning and the large volume of data, scene text recognition has evolved rapidly in recent years. Formerly, RNN-attention based methods have dominated this field, but suffer from the problem of \textit{attention drift} in certain situations. Lately, semantic segmentation based algorithms have proven effective at recognizing text of different forms (horizontal, oriented and curved). However, these methods may produce spurious characters or miss genuine characters, as they rely heavily on a thresholding procedure operated on segmentation maps. To tackle these challenges, we propose in this paper an alternative approach, called TextScanner, for scene text recognition. TextScanner bears three characteristics: (1) Basically, it belongs to the semantic segmentation family, as it generates pixel-wise, multi-channel segmentation maps for character class, position and order; (2) Meanwhile, akin to RNN-attention based methods, it also adopts RNN for context modeling; (3) Moreover, it performs paralleled prediction for character position and class, and ensures that characters are transcripted in correct order. The experiments on standard benchmark datasets demonstrate that TextScanner outperforms the state-of-the-art methods. Moreover, TextScanner shows its superiority in recognizing more difficult text such Chinese transcripts and aligning with target characters.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Zhaoyi Wan (9 papers)
  2. Minghang He (4 papers)
  3. Haoran Chen (52 papers)
  4. Xiang Bai (221 papers)
  5. Cong Yao (70 papers)
Citations (129)