Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Chi-Square Test of Distance Correlation (1912.12150v5)

Published 27 Dec 2019 in stat.ML, cs.LG, math.ST, stat.ME, and stat.TH

Abstract: Distance correlation has gained much recent attention in the data science community: the sample statistic is straightforward to compute and asymptotically equals zero if and only if independence, making it an ideal choice to discover any type of dependency structure given sufficient sample size. One major bottleneck is the testing process: because the null distribution of distance correlation depends on the underlying random variables and metric choice, it typically requires a permutation test to estimate the null and compute the p-value, which is very costly for large amount of data. To overcome the difficulty, in this paper we propose a chi-square test for distance correlation. Method-wise, the chi-square test is non-parametric, extremely fast, and applicable to bias-corrected distance correlation using any strong negative type metric or characteristic kernel. The test exhibits a similar testing power as the standard permutation test, and can be utilized for K-sample and partial testing. Theory-wise, we show that the underlying chi-square distribution well approximates and dominates the limiting null distribution in upper tail, prove the chi-square test can be valid and universally consistent for testing independence, and establish a testing power inequality with respect to the permutation test.

Citations (45)

Summary

We haven't generated a summary for this paper yet.