Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

One-Class Classification by Ensembles of Regression models -- a detailed study (1912.11475v3)

Published 26 Dec 2019 in cs.LG and stat.ML

Abstract: One-class classification (OCC) deals with the classification problem in which the training data has data points belonging only to target class. In this paper, we study a one-class classification algorithm, One-Class Classification by Ensembles of Regression models (OCCER), that uses regression methods to address OCC problems. The OCCER coverts an OCC problem into many regression problems in the original feature space so that each feature of the original feature space is used as the target variable in one of the regression problems. Other features are used as the variables on which the dependent variable depends. The errors of regression of a data point by all the regression models are used to compute the outlier score of the data point. An extensive comparison of the OCCER algorithm with state-of-the-art OCC algorithms on several datasets was conducted to show the effectiveness of the this approach. We also demonstrate that the OCCER algorithm can work well with the latent feature space created by autoencoders for image datasets. The implementation of OCCER is available at https://github.com/srikanthBezawada/OCCER.

Summary

We haven't generated a summary for this paper yet.