Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On metric regularity of Reed-Muller codes (1912.10811v2)

Published 23 Dec 2019 in cs.DM and math.CO

Abstract: In this work we study metric properties of the well-known family of binary Reed-Muller codes. Let $A$ be an arbitrary subset of the Boolean cube, and $\widehat{A}$ be the metric complement of $A$ -- the set of all vectors of the Boolean cube at the maximal possible distance from $A$. If the metric complement of $\widehat{A}$ coincides with $A$, then the set $A$ is called a {\it metrically regular set}. The problem of investigating metrically regular sets appeared when studying {\it bent functions}, which have important applications in cryptography and coding theory and are also one of the earliest examples of a metrically regular set. In this work we describe metric complements and establish the metric regularity of the codes $\mathcal{RM}(0,m)$ and $\mathcal{RM}(k,m)$ for $k \geqslant m-3$. Additionally, the metric regularity of the codes $\mathcal{RM}(1,5)$ and $\mathcal{RM}(2,6)$ is proved. Combined with previous results by Tokareva N. (2012) concerning duality of affine and bent functions, this establishes the metric regularity of most Reed-Muller codes with known covering radius. It is conjectured that all Reed-Muller codes are metrically regular.

Citations (1)

Summary

We haven't generated a summary for this paper yet.