Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BNS Invariants and Algebraic Fibrations of Group Extensions (1912.10524v2)

Published 22 Dec 2019 in math.GT and math.GR

Abstract: Let $G$ be a finitely generated group that can be written as an extension [ 1 \longrightarrow K \stackrel{i}{\longrightarrow} G \stackrel{f}{\longrightarrow} \Gamma \longrightarrow 1 ] where $K$ is a finitely generated group. By a study of the BNS invariants we prove that if $b_1(G) > b_1(\Gamma) > 0$, then $G$ algebraically fibers, i.e. admits an epimorphism to $\Bbb{Z}$ with finitely generated kernel. An interesting case of this occurrence is when $G$ is the fundamental group of a surface bundle over a surface $F \hookrightarrow X \rightarrow B$ with Albanese dimension $a(X) = 2$. As an application, we show that if $X$ has virtual Albanese dimension $va(X) = 2$ and base and fiber have genus greater that $1$, $G$ is noncoherent. This answers for a broad class of bundles a question of J. HiLLMan.

Summary

We haven't generated a summary for this paper yet.