Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 43 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 225 tok/s Pro
2000 character limit reached

Three-dimensional and four-dimensional scalar, vector, tensor cosmological fluctuations and the cosmological decomposition theorem (1912.10448v1)

Published 22 Dec 2019 in gr-qc

Abstract: In cosmological perturbation theory it is convenient to use the scalar, vector, tensor (SVT) basis as defined according to how these components transform under 3-dimensional rotations. In attempting to solve the fluctuation equations that are automatically written in terms of gauge-invariant combinations of these components, the equations are taken to break up into separate SVT sectors, the decomposition theorem. Here, without needing to specify a gauge, we solve the fluctuation equations exactly for some standard cosmologies, to show that in general the various gauge-invariant combinations only separate at a higher-derivative level. To achieve separation at the level of the fluctuation equations themselves one has to assume boundary conditions for the higher-derivative equations. While asymptotic conditions suffice for fluctuations around a dS background or a $k=0$ RW background, for fluctuations around a $k\neq 0$ RW background one additionally has to require that the fluctuations be well-behaved at the origin. We show that in certain cases the gauge-invariant combinations themselves involve both scalars and vectors. For such cases there is no decomposition theorem for the individual SVT components themselves, but for the gauge-invariant combinations there still can be. Given the lack of manifest covariance in defining a basis with respect to 3-dimensional rotations, we introduce an alternate SVT basis whose components are defined according to how they transform under 4-dimensional general coordinate transformations. With this basis the fluctuation equations greatly simplify, and while one can again break them up into separate gauge-invariant sectors at the higher-derivative level, in general we find that even with boundary conditions we do not obtain a decomposition theorem in which the fluctuations separate at the level of the fluctuation equations themselves.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube