Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
25 tokens/sec
GPT-5 High Premium
22 tokens/sec
GPT-4o
99 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
457 tokens/sec
Kimi K2 via Groq Premium
252 tokens/sec
2000 character limit reached

Finite-Time Performance of Distributed Two-Time-Scale Stochastic Approximation (1912.10155v1)

Published 21 Dec 2019 in math.OC

Abstract: Two-time-scale stochastic approximation is a popular iterative method for finding the solution of a system of two equations. Such methods have found broad applications in many areas, especially in machine learning and reinforcement learning. In this paper, we propose a distributed variant of this method over a network of agents, where the agents use two graphs representing their communication at different speeds due to the nature of their two-time-scale updates. Our main contribution is to provide a finite-time analysis for the performance of the proposed method. In particular, we establish an upper bound for the convergence rates of the mean square errors at the agents to zero as a function of the step sizes and the network topology.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.