Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling Intent, Dialog Policies and Response Adaptation for Goal-Oriented Interactions (1912.10130v1)

Published 20 Dec 2019 in cs.CL

Abstract: Building a machine learning driven spoken dialog system for goal-oriented interactions involves careful design of intents and data collection along with development of intent recognition models and dialog policy learning algorithms. The models should be robust enough to handle various user distractions during the interaction flow and should steer the user back into an engaging interaction for successful completion of the interaction. In this work, we have designed a goal-oriented interaction system where children can engage with agents for a series of interactions involving Meet \& Greet' andSimon Says' game play. We have explored various feature extractors and models for improved intent recognition and looked at leveraging previous user and system interactions in novel ways with attention models. We have also looked at dialog adaptation methods for entrained response selection. Our bootstrapped models from limited training data perform better than many baseline approaches we have looked at for intent recognition and dialog action prediction.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Saurav Sahay (34 papers)
  2. Shachi H Kumar (17 papers)
  3. Eda Okur (20 papers)
  4. Haroon Syed (1 paper)
  5. Lama Nachman (27 papers)
Citations (13)