Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analytic twists of $\rm GL_3\times \rm GL_2$ automorphic forms (1912.09772v4)

Published 20 Dec 2019 in math.NT

Abstract: Let $\pi$ be a Hecke--Maass cusp form for $\rm SL_3(\mathbb{Z})$ with normalized Hecke eigenvalues $\lambda_{\pi}(n,r)$. Let $f$ be a holomorphic or Maass cusp form for $\rm SL_2(\mathbb{Z})$ with normalized Hecke eigenvalues $\lambda_f(n)$. In this paper, we are concerned with obtaining nontrivial estimates for the sum \begin{equation*} \sum_{r,n\geq 1}\lambda_{\pi}(n,r)\lambda_f(n)e\left(t\,\varphi(r2n/N)\right)V\left(r2n/N\right), \end{equation*} where $e(x)=e{2\pi ix}$, $V(x)\in \mathcal{C}c{\infty}(0,\infty)$, $t\geq 1$ is a large parameter and $\varphi(x)$ is some real-valued smooth function. As applications, we give an improved subconvexity bound for $\rm GL_3\times \rm GL_2$ $L$-functions in the $t$-aspect, and under the Ramanujan--Petersson conjecture we derive the following bound for sums of $\rm GL_3\times \rm GL_2$ Fourier coefficients \begin{equation*} \sum{r2n\leq x}\lambda_{\pi}(r,n)\lambda_f(n)\ll_{\pi, f, \varepsilon} x{5/7-1/364+\varepsilon} \end{equation*} for any $\varepsilon>0$, which breaks for the first time the barrier $O(x{5/7+\varepsilon})$ in a work by Friedlander--Iwaniec.

Summary

We haven't generated a summary for this paper yet.