Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Waiting but not Aging: Optimizing Information Freshness Under the Pull Model (1912.08722v4)

Published 17 Dec 2019 in cs.NI and cs.LG

Abstract: The Age-of-Information is an important metric for investigating the timeliness performance in information-update systems. In this paper, we study the AoI minimization problem under a new Pull model with replication schemes, where a user proactively sends a replicated request to multiple servers to "pull" the information of interest. Interestingly, we find that under this new Pull model, replication schemes capture a novel tradeoff between different values of the AoI across the servers (due to the random updating processes) and different response times across the servers, which can be exploited to minimize the expected AoI at the user's side. Specifically, assuming Poisson updating process for the servers and exponentially distributed response time, we derive a closed-form formula for computing the expected AoI and obtain the optimal number of responses to wait for to minimize the expected AoI. Then, we extend our analysis to the setting where the user aims to maximize the AoI-based utility, which represents the user's satisfaction level with respect to the freshness of the received information. Furthermore, we consider a more realistic scenario where the user has no prior knowledge of the system. In this case, we reformulate the utility maximization problem as a stochastic Multi-Armed Bandit problem with side observations and leverage a special linear structure of side observations to design learning algorithms with improved performance guarantees. Finally, we conduct extensive simulations to elucidate our theoretical results and compare the performance of different algorithms. Our findings reveal that under the Pull model, waiting does not necessarily lead to aging; waiting for more than one response can often significantly reduce the AoI and improve the AoI-based utility in most scenarios.

Citations (30)

Summary

We haven't generated a summary for this paper yet.