Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Centralized Cooperation for Connected and Automated Vehicles at Intersections by Proximal Policy Optimization (1912.08410v2)

Published 18 Dec 2019 in cs.RO

Abstract: Connected vehicles will change the modes of future transportation management and organization, especially at an intersection without traffic light. Centralized coordination methods globally coordinate vehicles approaching the intersection from all sections by considering their states altogether. However, they need substantial computation resources since they own a centralized controller to optimize the trajectories for all approaching vehicles in real-time. In this paper, we propose a centralized coordination scheme of automated vehicles at an intersection without traffic signals using reinforcement learning (RL) to address low computation efficiency suffered by current centralized coordination methods. We first propose an RL training algorithm, model accelerated proximal policy optimization (MA-PPO), which incorporates a prior model into proximal policy optimization (PPO) algorithm to accelerate the learning process in terms of sample efficiency. Then we present the design of state, action and reward to formulate centralized coordination as an RL problem. Finally, we train a coordinate policy in a simulation setting and compare computing time and traffic efficiency with a coordination scheme based on model predictive control (MPC) method. Results show that our method spends only 1/400 of the computing time of MPC and increase the efficiency of the intersection by 4.5 times.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com