Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lower Memory Oblivious (Tensor) Subspace Embeddings with Fewer Random Bits: Modewise Methods for Least Squares (1912.08294v2)

Published 17 Dec 2019 in math.NA, cs.NA, and stat.ML

Abstract: In this paper new general modewise Johnson-Lindenstrauss (JL) subspace embeddings are proposed that are both considerably faster to generate and easier to store than traditional JL embeddings when working with extremely large vectors and/or tensors. Corresponding embedding results are then proven for two different types of low-dimensional (tensor) subspaces. The first of these new subspace embedding results produces improved space complexity bounds for embeddings of rank-$r$ tensors whose CP decompositions are contained in the span of a fixed (but unknown) set of $r$ rank-one basis tensors. In the traditional vector setting this first result yields new and very general near-optimal oblivious subspace embedding constructions that require fewer random bits to generate than standard JL embeddings when embedding subspaces of $\mathbb{C}N$ spanned by basis vectors with special Kronecker structure. The second result proven herein provides new fast JL embeddings of arbitrary $r$-dimensional subspaces $\mathcal{S} \subset \mathbb{C}N$ which also require fewer random bits (and so are easier to store - i.e., require less space) than standard fast JL embedding methods in order to achieve small $\epsilon$-distortions. These new oblivious subspace embedding results work by $(i)$ effectively folding any given vector in $\mathcal{S}$ into a (not necessarily low-rank) tensor, and then $(ii)$ embedding the resulting tensor into $\mathbb{C}m$ for $m \leq C r \logc(N) / \epsilon2$. Applications related to compression and fast compressed least squares solution methods are also considered, including those used for fitting low-rank CP decompositions, and the proposed JL embedding results are shown to work well numerically in both settings.

Citations (20)

Summary

We haven't generated a summary for this paper yet.