Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Large-scales patterns in a minimal cognitive flocking model: incidental leaders, nematic patterns, and aggregates (1912.07929v1)

Published 17 Dec 2019 in physics.bio-ph, cond-mat.soft, and cond-mat.stat-mech

Abstract: We study a minimal cognitive flocking model, which assumes that the moving entities navigate using exclusively the available instantaneous visual information. The model consists of active particles, with no memory, that interact by a short-ranged, position-based, attractive force that acts inside a vision cone (VC) and lack velocity-velocity alignment. We show that this active system can exhibit -- due to the VC that breaks Newton's third law -- various complex, large-scale, self-organized patterns. Depending on parameter values, we observe the emergence of aggregates or milling-like patterns, the formation of moving -- locally polar -- files with particles at the front of these structures acting as effective leaders, and the self-organization of particles into macroscopic nematic structures leading to long-ranged nematic order. Combining simulations and non-linear field equations, we show that position-based active models, as the one analyzed here, represent a new class of active systems fundamentally different from other active systems, including velocity-alignment-based flocking systems. The reported results are of prime importance in the study, interpretation, and modeling of collective motion patterns in living and non-living active systems.

Summary

We haven't generated a summary for this paper yet.