Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

R-estimators in GARCH models; asymptotics, applications and bootstrapping (1912.07592v2)

Published 13 Dec 2019 in math.ST and stat.TH

Abstract: The quasi-maximum likelihood estimation is a commonly-used method for estimating GARCH parameters. However, such estimators are sensitive to outliers and their asymptotic normality is proved under the finite fourth moment assumption on the underlying error distribution. In this paper, we propose a novel class of estimators of the GARCH parameters based on ranks, called R-estimators, with the property that they are asymptotic normal under the existence of a more than second moment of the errors and are highly efficient. We also consider the weighted bootstrap approximation of the finite sample distributions of the R-estimators. We propose fast algorithms for computing the R-estimators and their bootstrap replicates. Both real data analysis and simulations show the superior performance of the proposed estimators under the normal and heavy-tailed distributions. Our extensive simulations also reveal excellent coverage rates of the weighted bootstrap approximations. In addition, we discuss empirical and simulation results of the R-estimators for the higher order GARCH models such as the GARCH~($2, 1$) and asymmetric models such as the GJR model.

Summary

We haven't generated a summary for this paper yet.