Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

McKean-Vlasov equations on infinite-dimensional Hilbert spaces with irregular drift and additive fractional noise (1912.07427v1)

Published 16 Dec 2019 in math.PR

Abstract: This paper establishes results on the existence and uniqueness of solutions to McKean-Vlasov equations, also called mean-field stochastic differential equations, in an infinite-dimensional Hilbert space setting with irregular drift. Here, McKean-Vlasov equations with additive noise are considered where the driving noise is cylindrical (fractional) Brownian motion. The existence and uniqueness of weak solutions are established for drift coefficients that are merely measurable, bounded, and continuous in the law variable. In particular, the drift coefficient is allowed to be singular in the spatial variable. Further, we discuss existence of a pathwisely unique strong solution as well as Malliavin differentiability.

Summary

We haven't generated a summary for this paper yet.