Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Disentangled Representations for Human Retargeting by Multi-view Learning (1912.06265v1)

Published 12 Dec 2019 in cs.CV

Abstract: We study the problem of learning disentangled representations for data across multiple domains and its applications in human retargeting. Our goal is to map an input image to an identity-invariant latent representation that captures intrinsic factors such as expressions and poses. To this end, we present a novel multi-view learning approach that leverages various data sources such as images, keypoints, and poses. Our model consists of multiple id-conditioned VAEs for different views of the data. During training, we encourage the latent embeddings to be consistent across these views. Our observation is that auxiliary data like keypoints and poses contain critical, id-agnostic semantic information, and it is easier to train a disentangling CVAE on these simpler views to separate such semantics from other id-specific attributes. We show that training multi-view CVAEs and encourage latent-consistency guides the image encoding to preserve the semantics of expressions and poses, leading to improved disentangled representations and better human retargeting results.

Citations (8)

Summary

We haven't generated a summary for this paper yet.