Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding Important Features of Deep Learning Models for Transmission Electron Microscopy Image Segmentation (1912.06077v1)

Published 12 Dec 2019 in eess.IV, cond-mat.mtrl-sci, and cs.LG

Abstract: Cutting edge deep learning techniques allow for image segmentation with great speed and accuracy. However, application to problems in materials science is often difficult since these complex models may have difficultly learning physical parameters. In situ electron microscopy provides a clear platform for utilizing automated image analysis. In this work we consider the case of studying coarsening dynamics in supported nanoparticles, which is important for understanding e.g. the degradation of industrial catalysts. By systematically studying dataset preparation, neural network architecture, and accuracy evaluation, we describe important considerations in applying deep learning to physical applications, where generalizable and convincing models are required.

Citations (10)

Summary

We haven't generated a summary for this paper yet.