Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Algorithmic Price Discrimination (1912.05770v1)

Published 12 Dec 2019 in cs.GT

Abstract: We consider a generalization of the third degree price discrimination problem studied in Bergemann et al. (2015), where an intermediary between the buyer and the seller can design market segments to maximize any linear combination of consumer surplus and seller revenue. Unlike in Bergemann et al. (2015), we assume that the intermediary only has partial information about the buyer's value. We consider three different models of information, with increasing order of difficulty. In the first model, we assume that the intermediary's information allows him to construct a probability distribution of the buyer's value. Next we consider the sample complexity model, where we assume that the intermediary only sees samples from this distribution. Finally, we consider a bandit online learning model, where the intermediary can only observe past purchasing decisions of the buyer, rather than her exact value. For each of these models, we present algorithms to compute optimal or near optimal market segmentation.

Citations (28)

Summary

We haven't generated a summary for this paper yet.