Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Metagenomic Binning Problem: Clustering Markov Sequences (1912.05741v1)

Published 12 Dec 2019 in cs.IT and math.IT

Abstract: The goal of metagenomics is to study the composition of microbial communities, typically using high-throughput shotgun sequencing. In the metagenomic binning problem, we observe random substrings (called contigs) from a mixture of genomes and want to cluster them according to their genome of origin. Based on the empirical observation that genomes of different bacterial species can be distinguished based on their tetranucleotide frequencies, we model this task as the problem of clustering N sequences generated by M distinct Markov processes, where M<<N. Utilizing the large-deviation principle for Markov processes, we establish the information-theoretic limit for perfect binning. Specifically, we show that the length of the contigs must scale with the inverse of the Chernoff Information between the two most similar species. Our result also implies that contigs should be binned using the conditional relative entropy as a measure of distance, as opposed to the Euclidean distance often used in practice.

Citations (1)

Summary

We haven't generated a summary for this paper yet.