Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stability of a wave and Klein-Gordon system with mixed coupling (1912.05578v3)

Published 11 Dec 2019 in math.AP, math-ph, and math.MP

Abstract: We are interested in establishing stability results for a system of semilinear wave and Klein-Gordon equations with mixed coupling nonlinearities, that is, we consider all of the possible quadratic nonlinear terms of the type of wave and Klein-Gordon interactions. The main difficulties are due to the absence of derivatives on the wave component in the nonlinearities. By doing a transformation on the wave equation, we reveal a hidden null structure. Next by using the scaling vector field on the wave component only, which was generally avoided, we are able to get very good $L2$--type estimates on the wave component. Then we distinguish high order and low order energies of both wave and Klein-Gordon components, which allows us to close the bootstrap argument.

Summary

We haven't generated a summary for this paper yet.