Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse Joint Transmission for Cell-Free Massive MIMO: A Sparse PCA Approach (1912.05231v2)

Published 11 Dec 2019 in eess.SP, cs.IT, and math.IT

Abstract: Cell-free massive multiple-input multiple-output (MIMO) is a promising cellular network. In this network, a large number of distributed and multi-antenna access points (APs) jointly serve many single antenna users using the same time-frequency resource. Consequently, it possibly provides a uniform service experience to users regardless of the users' locations by eliminating interference at cell boundaries via user-centric joint transmission. This joint transmission, however, requires extremely high signaling overheads for data sharing via backhaul links and causes a high network-wide power consumption. To resolve these problems, in this paper, we present a novel joint transmission method, which is referred to as sparse joint transmission (sparse-JT), for cell-free massive MIMO networks with finite backhaul capacity constraints. Sparse-JT jointly identifies the user-centric cooperative APs sets, precoding vectors for beamforming and compression, and power allocation that maximizes a lower bound of the sum-spectral efficiency under the constraint that a total number of active APs per the joint transmission is sparse. The proposed algorithm guarantees to identify a local-optimal solution for a relaxed sum-spectral maximization problem. By simulations, we show that sparse-JT achieves higher ergodic spectral efficiencies than those attained by multi-cell zero-forcing precoding with the user-centric AP clustering algorithm in all system configurations.

Citations (4)

Summary

We haven't generated a summary for this paper yet.