Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis of finite element approximations of Stokes equations with non-smooth data (1912.04962v1)

Published 10 Dec 2019 in math.NA and cs.NA

Abstract: In this paper we analyze the finite element approximation of the Stokes equations with non-smooth Dirichlet boundary data. To define the discrete solution, we first approximate the boundary datum by a smooth one and then apply a standard finite element method to the regularized problem. We prove almost optimal order error estimates for two regularization procedures in the case of general data in fractional order Sobolev spaces, and for the Lagrange interpolation (with appropriate modifications at the discontinuities) for piecewise smooth data. Our results apply in particular to the classic lid-driven cavity problem improving the error estimates obtained in [Z. Cai and Y. Wang, Math. Comp., 78(266):771-787, 2009]. Finally, we introduce and analyze an a posteriori error estimator. We prove its reliability and efficiency, and show some numerical examples which suggest that optimal order of convergence is obtained by an adaptive procedure based on our estimator.

Citations (5)

Summary

We haven't generated a summary for this paper yet.