Large deviations built on max-stability (1912.04666v3)
Abstract: In this paper, we show that the basic results in large deviations theory hold for general monetary risk measures, which satisfy the crucial property of max-stability. A max-stable monetary risk measure fulfills a lattice homomorphism property, and satisfies under a suitable tightness condition the Laplace Principle (LP), that is, admits a dual representation with affine convex conjugate. By replacing asymptotic concentration of probability by concentration of risk, we formulate a Large Deviation Principle (LDP) for max-stable monetary risk measures, and show its equivalence to the LP. In particular, the special case of the asymptotic entropic risk measure corresponds to the classical Varadhan-Bryc equivalence between the LDP and LP. The main results are illustrated by the asymptotic shortfall risk measure.