Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s
GPT-5 High 42 tok/s Pro
GPT-4o 109 tok/s
GPT OSS 120B 477 tok/s Pro
Kimi K2 222 tok/s Pro
2000 character limit reached

Estimating an Extreme Bayesian Network via Scalings (1912.03968v1)

Published 9 Dec 2019 in stat.ME

Abstract: Recursive max-linear vectors model causal dependence between its components by expressing each node variable as a max-linear function of its parental nodes in a directed acyclic graph and some exogenous innovation. Motivated by extreme value theory, innovations are assumed to have regularly varying distribution tails. We propose a scaling technique in order to determine a causal order of the node variables. All dependence parameters are then estimated from the estimated scalings. Furthermore, we prove asymptotic normality of the estimated scalings and dependence parameters based on asymptotic normality of the empirical spectral measure. Finally, we apply our structure learning and estimation algorithm to financial data and food dietary interview data.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.