Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Greed Works: An Improved Analysis of Sampling Kaczmarz-Motzkin (1912.03544v2)

Published 7 Dec 2019 in math.NA and cs.NA

Abstract: Stochastic iterative algorithms have gained recent interest in machine learning and signal processing for solving large-scale systems of equations, $Ax=b$. One such example is the Randomized Kaczmarz (RK) algorithm, which acts only on single rows of the matrix $A$ at a time. While RK randomly selects a row of $A$ to work with, Motzkin's Method (MM) employs a greedy row selection. Connections between the two algorithms resulted in the Sampling Kaczmarz-Motzkin (SKM) algorithm which samples a random subset of $\beta$ rows of $A$ and then greedily selects the best row of the subset. Despite their variable computational costs, all three algorithms have been proven to have the same theoretical upper bound on the convergence rate. In this work, an improved analysis of the range of random (RK) to greedy (MM) methods is presented. This analysis improves upon previous known convergence bounds for SKM, capturing the benefit of partially greedy selection schemes. This work also further generalizes previous known results, removing the theoretical assumptions that $\beta$ must be fixed at every iteration and that $A$ must have normalized rows.

Citations (47)

Summary

We haven't generated a summary for this paper yet.