Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
55 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
29 tokens/sec
GPT-4o
100 tokens/sec
DeepSeek R1 via Azure Premium
82 tokens/sec
GPT OSS 120B via Groq Premium
469 tokens/sec
Kimi K2 via Groq Premium
210 tokens/sec
2000 character limit reached

Fully Dense Neural Network for the Automatic Modulation Recognition (1912.03449v1)

Published 7 Dec 2019 in eess.SP and cs.LG

Abstract: Nowadays, we mainly use various convolution neural network (CNN) structures to extract features from radio data or spectrogram in AMR. Based on expert experience and spectrograms, they not only increase the difficulty of preprocessing, but also consume a lot of memory. In order to directly use in-phase and quadrature (IQ) data obtained by the receiver and enhance the efficiency of network extraction features to improve the recognition rate of modulation mode, this paper proposes a new network structure called Fully Dense Neural Network (FDNN). This network uses residual blocks to extract features, dense connect to reduce model size, and adds attentions mechanism to recalibrate. Experiments on RML2016.10a show that this network has a higher recognition rate and lower model complexity. And it shows that the FDNN model with dense connections can not only extract features effectively but also greatly reduce model parameters, which also provides a significant contribution for the application of deep learning to the intelligent radio system.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube