Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pyramid Multi-view Stereo Net with Self-adaptive View Aggregation (1912.03001v2)

Published 6 Dec 2019 in cs.CV

Abstract: n this paper, we propose an effective and efficient pyramid multi-view stereo (MVS) net with self-adaptive view aggregation for accurate and complete dense point cloud reconstruction. Different from using mean square variance to generate cost volume in previous deep-learning based MVS methods, our \textbf{VA-MVSNet} incorporates the cost variances in different views with small extra memory consumption by introducing two novel self-adaptive view aggregations: pixel-wise view aggregation and voxel-wise view aggregation. To further boost the robustness and completeness of 3D point cloud reconstruction, we extend VA-MVSNet with pyramid multi-scale images input as \textbf{PVA-MVSNet}, where multi-metric constraints are leveraged to aggregate the reliable depth estimation at the coarser scale to fill in the mismatched regions at the finer scale. Experimental results show that our approach establishes a new state-of-the-art on the \textsl{\textbf{DTU}} dataset with significant improvements in the completeness and overall quality, and has strong generalization by achieving a comparable performance as the state-of-the-art methods on the \textsl{\textbf{Tanks and Temples}} benchmark. Our codebase is at \hyperlink{https://github.com/yhw-yhw/PVAMVSNet}{https://github.com/yhw-yhw/PVAMVSNet}

Citations (106)

Summary

We haven't generated a summary for this paper yet.