Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exposing Fake Images with Forensic Similarity Graphs (1912.02861v2)

Published 5 Dec 2019 in eess.IV and cs.CV

Abstract: We propose new image forgery detection and localization algorithms by recasting these problems as graph-based community detection problems. To do this, we introduce a novel abstract, graph-based representation of an image, which we call the Forensic Similarity Graph, that captures key forensic relationships among regions in the image. In this representation, small image patches are represented by graph vertices with edges assigned according to the forensic similarity between patches. Localized tampering introduces unique structure into this graph, which aligns with a concept called ``community structure'' in graph-theory literature. In the Forensic Similarity Graph, communities correspond to the tampered and unaltered regions in the image. As a result, forgery detection is performed by identifying whether multiple communities exist, and forgery localization is performed by partitioning these communities. We present two community detection techniques, adapted from literature, to detect and localize image forgeries. We experimentally show that our proposed community detection methods outperform existing state-of-the-art forgery detection and localization methods, which do not capture such community structure.

Citations (50)

Summary

We haven't generated a summary for this paper yet.