Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predominant Musical Instrument Classification based on Spectral Features (1912.02606v2)

Published 30 Nov 2019 in eess.AS, cs.LG, cs.SD, and stat.ML

Abstract: This work aims to examine one of the cornerstone problems of Musical Instrument Retrieval (MIR), in particular, instrument classification. IRMAS (Instrument recognition in Musical Audio Signals) data set is chosen for this purpose. The data includes musical clips recorded from various sources in the last century, thus having a wide variety of audio quality. We have presented a very concise summary of past work in this domain. Having implemented various supervised learning algorithms for this classification task, SVM classifier has outperformed the other state-of-the-art models with an accuracy of 79%. We also implemented Unsupervised techniques out of which Hierarchical Clustering has performed well.

Citations (16)

Summary

We haven't generated a summary for this paper yet.