Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inference for Two Lomax Populations Under Joint Type-II Censoring (1912.02517v1)

Published 5 Dec 2019 in math.ST, stat.CO, and stat.TH

Abstract: Lomax distribution has been widely used in economics, business and actuarial sciences. Due to its importance, we consider the statistical inference of this model under joint type-II censoring scenario. In order to estimate the parameters, we derive the Newton-Raphson(NR) procedure and we observe that most of the times in the simulation NR algorithm does not converge. Consequently, we make use of the expectation-maximization (EM) algorithm. Moreover, Bayesian estimations are also provided based on squared error, linear-exponential and generalized entropy loss functions together with the importance sampling method due to the structure of posterior density function. In the sequel, we perform a Monte Carlo simulation experiment to compare the performances of the listed methods. Mean squared error values, averages of estimated values as well as coverage probabilities and average interval lengths are considered to compare the performances of different methods. The approximate confidence intervals, bootstrap-p and bootstrap-t confidence intervals are computed for EM estimations. Also, Bayesian coverage probabilities and credible intervals are obtained. Finally, we consider the Bladder Cancer data to illustrate the applicability of the methods covered in the paper.

Summary

We haven't generated a summary for this paper yet.