Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic Newton and Cubic Newton Methods with Simple Local Linear-Quadratic Rates (1912.01597v1)

Published 3 Dec 2019 in cs.LG, math.OC, and stat.ML

Abstract: We present two new remarkably simple stochastic second-order methods for minimizing the average of a very large number of sufficiently smooth and strongly convex functions. The first is a stochastic variant of Newton's method (SN), and the second is a stochastic variant of cubically regularized Newton's method (SCN). We establish local linear-quadratic convergence results. Unlike existing stochastic variants of second order methods, which require the evaluation of a large number of gradients and/or Hessians in each iteration to guarantee convergence, our methods do not have this shortcoming. For instance, the simplest variants of our methods in each iteration need to compute the gradient and Hessian of a {\em single} randomly selected function only. In contrast to most existing stochastic Newton and quasi-Newton methods, our approach guarantees local convergence faster than with first-order oracle and adapts to the problem's curvature. Interestingly, our method is not unbiased, so our theory provides new intuition for designing new stochastic methods.

Citations (41)

Summary

We haven't generated a summary for this paper yet.