Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TU Wien @ TREC Deep Learning '19 -- Simple Contextualization for Re-ranking (1912.01385v1)

Published 3 Dec 2019 in cs.IR and cs.CL

Abstract: The usage of neural network models puts multiple objectives in conflict with each other: Ideally we would like to create a neural model that is effective, efficient, and interpretable at the same time. However, in most instances we have to choose which property is most important to us. We used the opportunity of the TREC 2019 Deep Learning track to evaluate the effectiveness of a balanced neural re-ranking approach. We submitted results of the TK (Transformer-Kernel) model: a neural re-ranking model for ad-hoc search using an efficient contextualization mechanism. TK employs a very small number of lightweight Transformer layers to contextualize query and document word embeddings. To score individual term interactions, we use a document-length enhanced kernel-pooling, which enables users to gain insight into the model. Our best result for the passage ranking task is: 0.420 MAP, 0.671 nDCG, 0.598 P@10 (TUW19-p3 full). Our best result for the document ranking task is: 0.271 MAP, 0.465 nDCG, 0.730 P@10 (TUW19-d3 re-ranking).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Sebastian Hofstätter (31 papers)
  2. Markus Zlabinger (7 papers)
  3. Allan Hanbury (45 papers)
Citations (15)

Summary

We haven't generated a summary for this paper yet.