Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s
GPT-5 High 45 tok/s Pro
GPT-4o 104 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 206 tok/s Pro
2000 character limit reached

On the size of chaos via Glauber calculus in the classical mean-field dynamics (1912.01366v2)

Published 3 Dec 2019 in math.AP, math-ph, math.MP, and math.PR

Abstract: We consider a system of classical particles, interacting via a smooth, long-range potential, in the mean-field regime, and we optimally analyze the propagation of chaos in form of sharp estimates on many-particle correlation functions. While approaches based on the BBGKY hierarchy are doomed by uncontrolled losses of derivatives, we propose a novel non-hierarchical approach that focusses on the empirical measure of the system and exploits a Glauber type calculus with respect to initial data in form of higher-order Poincar\'e inequalities for cumulants. This main result allows to rigorously truncate the BBGKY hierarchy to an arbitrary precision on the mean-field timescale, thus justifying the Bogolyubov corrections to mean field. As corollaries, we also deduce a quantitative central limit theorem for fluctuations of the empirical measure, and we partially justify the Lenard-Balescu limit for a spatially homogeneous system away from thermal equilibrium.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)