Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mixing autoencoder with classifier: conceptual data visualization (1912.01137v3)

Published 3 Dec 2019 in cs.LG, cs.CV, cs.NE, and stat.ML

Abstract: In this short paper, a neural network that is able to form a low dimensional topological hidden representation is explained. The neural network can be trained as an autoencoder, a classifier or mix of both, and produces different low dimensional topological map for each of them. When it is trained as an autoencoder, the inherent topological structure of the data can be visualized, while when it is trained as a classifier, the topological structure is further constrained by the concept, for example the labels the data, hence the visualization is not only structural but also conceptual. The proposed neural network significantly differ from many dimensional reduction models, primarily in its ability to execute both supervised and unsupervised dimensional reduction. The neural network allows multi perspective visualization of the data, and thus giving more flexibility in data analysis. This paper is supported by preliminary but intuitive visualization experiments.

Citations (9)

Summary

We haven't generated a summary for this paper yet.