Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Combining MixMatch and Active Learning for Better Accuracy with Fewer Labels (1912.00594v2)

Published 2 Dec 2019 in cs.LG and stat.ML

Abstract: We propose using active learning based techniques to further improve the state-of-the-art semi-supervised learning MixMatch algorithm. We provide a thorough empirical evaluation of several active-learning and baseline methods, which successfully demonstrate a significant improvement on the benchmark CIFAR-10, CIFAR-100, and SVHN datasets (as much as 1.5% in absolute accuracy). We also provide an empirical analysis of the cost trade-off between incrementally gathering more labeled versus unlabeled data. This analysis can be used to measure the relative value of labeled/unlabeled data at different points of the learning curve, where we find that although the incremental value of labeled data can be as much as 20x that of unlabeled, it quickly diminishes to less than 3x once more than 2,000 labeled example are observed. Code can be found at https://github.com/google-research/mma.

Citations (33)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub